Regulation of mutY and nature of mutator mutations in Escherichia coli populations under nutrient limitation.

نویسندگان

  • Lucinda Notley-McRobb
  • Rachel Pinto
  • Shona Seeto
  • Thomas Ferenci
چکیده

Previous analysis of aerobic, glucose-limited continuous cultures of Escherichia coli revealed that G:C-to-T:A (G:C-->T:A) transversions were the most commonly occurring type of spontaneous mutation. One possible explanation for the preponderance of these mutations was that nutrient limitation repressed MutY-dependent DNA repair, resulting in increased proportions of G:C-->T:A transversions. The regulation of the mutY-dependent DNA repair system was therefore studied with a transcriptional mutY-lacZ fusion recombined into the chromosome. Expression from the mutY promoter was fourfold higher under aerobic conditions than under anaerobic conditions. But mutY expression was higher in glucose- or ammonia-limited chemostats than in nutrient-excess batch culture, so mutY was not downregulated by nutrient limitation. An alternative explanation for the frequency of G:C-->T:A transversions was the common appearance of mutY mutator mutations in the chemostat populations. Of 11 chemostat populations screened in detail, six contained mutators, and the mutator mutation in four cultures was located in the region of mutY at 66 min on the chromosome. The spectrum of mutations and rate of mutation in these isolates were fully consistent with a mutY-deficiency in each strain. Based on PCR analysis of the region within and around mutY, isolates from three individual populations contained deletions extending at least 2 kb upstream of mutY and more than 5 kb downstream. In the fourth population, the deletion was even longer, extending at least 5 kb upstream and 5 kb downstream of mutY. The isolation of mutY mutator strains from four independent populations with extensive chromosomal rearrangements suggests that mutY inactivation by deletion is a means of increasing mutation rates under nutrient limitation and explains the observed frequency of G:C-->T:A mutations in glucose-limited chemostats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enrichment and elimination of mutY mutators in Escherichia coli populations.

The kinetics of mutator sweeps was followed in two independent populations of Escherichia coli grown for up to 350 generations in glucose-limited continuous culture. A rapid elevation of mutation rates was observed in both populations within 120-150 generations, as was apparent from major increases in the proportion of the populations with unselected mutations in fhuA. The increase in mutation ...

متن کامل

Mutation accumulation and fitness in mutator subpopulations of Escherichia coli.

Bacterial populations in clinical and laboratory settings contain a significant proportion of mutants with elevated mutation rates (mutators). Mutators have a particular advantage when multiple beneficial mutations are needed for fitness, as in antibiotic resistance. Nevertheless, high mutation rates potentially lead to increasing numbers of deleterious mutations and subsequently to the decreas...

متن کامل

The mutY gene: a mutator locus in Escherichia coli that generates G.C----T.A transversions.

We have used a strain with an altered lacZ gene, which reverts to wild type via only certain transversions, to detect transversion-specific mutators in Escherichia coli. Detection relied on a papillation technique that uses a combination of beta-galactosides to reveal blue Lac+ papillae. One class of mutators is specific for the G.C----T.A transversion as determined by the reversion pattern of ...

متن کامل

Escherichia coli MutY protein has a guanine-DNA glycosylase that acts on 7,8-dihydro-8-oxoguanine:guanine mispair to prevent spontaneous G:C-->C:G transversions.

Low rates of spontaneous G:C-->C:G transversions would be achieved not only by the correction of base mismatches during DNA replication but also by the prevention and removal of oxidative base damage in DNA. Escherichia coli must have several pathways to repair such mismatches and DNA modifications. In this study, we attempted to identify mutator loci leading to G:C-->C:G transversions in E.col...

متن کامل

rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses.

The general stress resistance of Escherichia coli is controlled by the RpoS sigma factor (phi(S)), but mutations in rpoS are surprisingly common in natural and laboratory populations. Evidence for the selective advantage of losing rpoS was obtained from experiments with nutrient-limited bacteria at different growth rates. Wild-type bacteria were rapidly displaced by rpoS mutants in both glucose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 184 3  شماره 

صفحات  -

تاریخ انتشار 2002